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1.0 INTRODUCTION

The ability of systems (e.g., power plants, aircrWL missfies spcecra etc.) to successfully perform their

functions while degraded due to either mm-made or natual stimuli Is a subject of current interest by the

probabilistic risk assesmnent and survivabilityArulembilityy assessment communities. A common tool

used by these communities to both qualify and quantify the likelihod of these degraded states is the fault

tree. Following the definition given by Barlow and Lambert (Ref. 1), a fault tree is a model that

graphically and logically represents the vanous combinations of possible events occurring in a system

that leads to the top event of interest. Figure I illustrates a simple fault tree for the top evet of a

disabled automobile air bag resuaining system. The air bag system is disabled if either the inflation

mechanism is disabled or both collision sensors are disabled. The combination of events in a fault tree is

represented by special symbols which define logic gates where the most familiar gates are the AND and

OR gates. The AND gate is passed if all of its inputs occur whereas the OR gate is passed if one or more

of its inputs occur. The use of fault trees to graphically define the disablement logic of systems is widely

accepted.

Ib~ j
U U

Figure 1. Example fault tree for automobile air bag restraining system.

Another less frequently used but useful gate is the M-out-of-N gate. This gate is passed if only M or

more input events occur. Figure 2 illustrates the common fault tree symbol used to denote M-out-of-N

gate. Common instances where an M-out-of-N gate is used is in voting systems. For example, to reduce

the number of unnecessary and expensive shutdowns of a production process due to spurious signals, a

system could be designed to shut down if two or more sensors out of a suite of three redundant sensors

indicate a problem.



Figure 2. Commom M-out-of-N gape symbol

Intrestingly, any M-out-of-N gate can be reduced to an equivalent set of AND and OR gales a

llustrated in FIgures 3 and 4 for a 2-out-of-3 gape. The convenience of using an M-out-of-N pei nsead

of Its equivalent AND and OR gates becomes apparent when M and N become lare.

2 3

0 0 0

Figure 3. Example usage of a 2-out-of-3 gate

r yo

Figure 4. Equivalent reptesentation of 2-out-of-3 fault tree shown in Figure 3.
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Quanification of fault trees is a faily studfwad pocess when probabilitis are assigned to the

input events and all the input event. ae statistically independent. The output of m AND gate is

calculated by the multiplicative law of probability as defined in Equation 1 where Yi denotes n input

probabilities. Likewise, Equation 2 is a similar formula for calculating the output of an OR gate given n

statistically independent input probabilities. By applying Equations I and 2 to the respective gates in a

bottom-up fashion through the fault tree, the probability of the top event can be quantified.

n

n yi (1)
i=1

n
1- [I - Yi] (2)

The use of the M-out-of-N gates adds some additional complications in quantifying a fault tree. From

inspection of Figure 4, it is clear that the assumption of statistical independence for all gate inputs is

immediately negated. Consequently, quantifying an M-out-of-N gate requires knowledge of additional

laws of probability followed by an exercise in the event-composizion method of calculating the

probability of an event.

In practice, most present day fault tree analysts do not quantify fault trees by hand, but rather use more

sophisticated automated software tools (Refs. 2-4). Most of these tools are based on a cut set

methodology for quantification. Basically, a cut set is a set of events whose occurrence causes the top

event to occur. For example, the cut sets for the fault tree in Figure 4 are (Sensor No. 1, Sensor No. 2),

(Sensor No. 1, Sensor No. 3), and (Sensor No. 2, Sensor No. 3). For M-out-of-N gates where N

becomes large, the number of cut sets becomes unmanageable even with a software tooL Equation 3

defines the number of cut sets which must be manipulated for an M-out-of-N gate which is simply the

number of ways in which M objects can be selected out of N without regard to order.

Number of Cut Sets. = N! (3)(N-M) !M!

For example, for N = 25 and M = 10, there are 3,268,760 cut sets to be manipulated. To avoid this

problem, many automated tools use an approximation or limit N to a relatively snall number (e.g., 10).

In most cases, the approximation is only valid when the input probabilities are very small (e.g., < 0.01).

3



For those situations where N is too large for cut set techniques and an exact probability is desired, the

foMlowing algorithm is offered. This algorithm is easily coded into software for computational

convenience.

Before proceeding with describing the algorithm, some notation and definitions are provided. Let

e , e2, .--, e,, represent N statistically independent events,

PI- P2, ...Pn arm the probabilities of el, C2- ... , C-ut

E(JK) represents the event that exactly J of the K events (el, .... eK) occurred,

P(JK) is the probability of E(JK),

n represents Boolean AND operator,

U represents Boolean OR operator, and

Sdenotes the negation of event e.

4



2.0 ALGORrHM

Suppose one has N statistically independent events e. e2 ..... e. with known pbabilitis p p2.... pn-

Furthermore, let E(MN) represent the event that exactly M of these N events occur, and let P(MN) be

the probability of E(MN). Then find P(MNN) forM =0, 1, ..., N. Since each p can be different, the

binomial law does not apply.

Let E(JK) be the occurence of exactly J of the first K events el, e2, ... ,ek. and let P(J, K) be the

probability of E(JK). Now it is shown that the probabilities P(J,K + ), J = 0, 1, ..., K + 1 canbe

computed from the probabilities P(JK), J = 0, 1, .... IK Consider E(J, K + 1), the occurrence of exactly J

ofthe firstK+ I events el, e2, ..., ek+ 1. Suppose J = 0. Noneofthe firstK + events can occur only if

none of the first K events occur, and event ek + 1 also does not occur. This statement is written

symbolically in Equation 4.

E(OK + 1) = E(O K)feK + 1 (4)

Now compute the probability of the right side of Equation 4 to get an expression for P(O,K + 1), the

probability of E(OK + 1). The probability of E(OK) is P(OK) and the probability of iK + I is 1 -pK + 1.

Since E(J,K) depends only on events el through ek which are statistically independent of ek + I by

definition, E(J,K) and ek + I are independent for all values of J. Therefore, the simplified multiplicative

law of probability can be used for the occurrence of two independent events as shown in Equation 5.

P(O,K+I) = P(O,)[1-PK+ (5)

The special case of J = K + 1 is treated in a similar fashion. All of the first K + 1 events can occur only if

all of the first K events occur, and event ek + 1 also occurs. Equation 6 symbolizes this relation.

E(K+I,K+1) = E(KTK)neK+l (6)

The corresponding probability of E(K + 1,K + 1) is shown in Equation 7.

P(K+],K+J) = P(K,K)pK+l (7)

Now consider the cases where 0 < J < K + 1. For these cases, J of the first K + 1 events can occur in two

ways. Either J of the first K events occur, and event ek + 1 does not occur, or J - I of the first K events

occur, and event ek + I does occur. This is expressed symbolically in Equation 8.
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E(J,K+ 1) = (E(JK)neK+1) u (E(J-1,K)neK+1) (8)

Again invoking the independence of ek + 1 from E(J.K) for all values of J, the probability of

(E(JX. nr•÷•1) is P(J.KXl - pK+ 1), and the probability of (E(i- .K) r) e, 1) is PQ - 1, K)pK+ 1 ). Since

the two events (E(J.') r j. 1) and (E(J- .X) n eK÷ 1) are disjoint, the probability of either of them

occurring is equal to the sum of their individual probabilities as shown in Equation 9.

P(J,K+1) = P(J,)'[1-PK+1] +l P(J-IX)(PK+) for' (9)

(O<J<K+I)

If P(JK), J = 0 1, ..., K, is known for some value of K = K', epeated use of Equations 5, 7 and 9 yields

P(KL), J = 0, 1, .... K for all values of K greater than K' up to K = N. Since the values of P(JK) are

known for the trivial case ofK = 1 (P(0,1) = I -p and P(l,I) = pl), the probabilities P(MN),

M = 0, 1, ..., N, can be computed in N-1 steps. Each step requires one application of both Equations 5

and 7, and K applications of FAluation 9 where K is the step index. Therefore, the completion of P(MN)

for M = 0, 1 ..., N requires N - 1 applications of both Equations 5 and 7 and N(N - 1) 12 applications of

Equation 9. The individual probabilities P(MN) can then be summed to get the probability of M or more

events out of a possible N events.
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3.0 EXAMPLE

Assume there are five statisticadly independent events, el, e2 , e3 , e4, c5 , with known probabilities Pi =

0.20, p2 = 0.50, p3 = 0.30, p4 = 0.90, p5 = 0.70. Now suppose one wants to calculate the probability of

three or more of those events occurring. Using Equations 5, 7 and 9 in a recursive manner allows the

answer to be computed as demonstrated in the following calculations.

P(0,1) = I -PI = I - 0.20 = 0.80
p(l,l) = p, = 0.20

P(0,2) = P(0,1)[1 - p12] = 0.80(1 - 0.501 = 0.40
P(1,2) = P(l,I)[1 - p2] + P(0,1)p 2 = 0.20[1 - 0.501 + 0.80(0.50) = 0.50
P(2,2) = P(1,1)p2 = 0.20(0.50) = 0.10

P(0,3) = P(0,2)[I- P31 = o.40[1 - 0.301 = 0.28
P(1,3) = P(I,2)[I - I3] + P(0,2)p3  5011 - 0.301 + 0.40(0.30) = 0.47
P(2,3) = P(2,2)[I - p3] + P(1,2)p3 = 0.1011 - 0.30] + 0.50(0.30) = 0.22
P(3,3) = P(2,2)p3 = 0. 10(0.30) = 0.030

P(0,4) = P(0,3)[1 - P4] = 0.28(1 - 0.901 = 0.028
P(l,4) = P(I,3)[I - p4] + P(0,3)p4 = 0.47[1 - 0.901 + 0.28(0.90) = 0.299
P(2,4) = P(2,3)[1 - p4] + P(1,3)p4 = 0.22[1 - 0.90] + 0.47(0.90) = 0.445
P(3,4) = P(3,3)[I - p4] + P(2,3)p4 = 0.03011 - 0.901 + 0.22(0.90) = 0.201
P(4,4) = P(3,3)p4 = 0.030(0.90) = 0.027

P(0,5) = P(0,4)[I - P51 = 0.02801 - 0.701 = 0.0084
P(1,5) = P(1,4)[I -P] + P(0,4)ps = 0.299(1 - 0.701 + 0.028(0.70) = 0.1093
P(2,5) = P(2,4)[I - P5] + P(I,4)p5 = 0.445[1 - 0.70] + 0.299(0.70) = 0.3428
P(3,5) = P(3,4)[I - P5] + P(2,4)p5 = 0.201[1 - 0.701 + 0.445(0.70) = 0.3718*
P(4,5) = P(44)[I - P51 + P(3,4)p5 = 0.027[1 - 0.701 + 0.201(0.70) = 0.1488*
P(5,5) = P(4,4)p5 = 0.027(0.70) = 0.019

Summing all the probabilities which represent the occurrence of three or more events (those calculations

with an asterisk) gives the probability of three or more events, 0.5396. The reader is encouraged to

check the result.
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4.0 SUMMARY AND CONCLUSIONS

This algorithm has been implemented into a software. Performance of the software is on the order of N2

in time complexity and 2N in space complexity.

The order of N2 in time complexity can be verified by observing that for any combination of M and N,

the algorithm must compute the intermediate probabilities P(JK) for all values of K, i.e., 1,2, .... N.

Furthermore, for each K, P(JK) must be calculated on average of

i-1

times to account for all J. Noting that

N

X (i+i) (11)
i-J

is upper bounded by N, and neglecting the final linear summation of the appropriate intermediate

probabilities, the computational complexity is N X N = N2.

The space complexity of 2N can be achieved by recognizing that the final intermediate probabilities

P(JN), J = 0, 1 .... N depends only on the proceeding intermediate probabilities P(JN - ), J = 0, 1 ....

N - 1. Consequently, only two sets of intermediate probabilities must be kept on hand at any one time.

Since the maximum number of intermediate probabilities is N + 1 (0, 1, ..., N), the total space

requirement is N + (N + 1) which is approximately 2N.

A simple recursive algorithm is presented to compute the exact probability of occurrence of M or more

events out of a possible N events. The algorithm begins by recursively commuting the probability of

occurrence of exactly M events out of a possible N events. These intermediate results may be quickly

summed to obtain the industry standard definition of M or more events out of a possible N events.

Performance of the algorithm is on the order of N2 in time and 2N in space. This algorithm does not use

cut set methodology and consequently is not limited by the combinatorial explosion problem associated

with cut set manipulation of the M-out-of-N gate.

This algorithm is extremely useful when the exact probability of M-out-of-N is desired, especially in

cases where N exceeds limitations of cut set manipulation techliques and when the M-out-of-N event is

statistically independent of other events in the system under consideration.
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